• Places
    • Home
    • Graphs
    • Prefixes
  • Admin
    • Users
    • Settings
    • Plugins
    • Statistics
  • Repository
    • Load local file
    • Load from HTTP
    • Load from library
    • Remove triples
    • Clear repository
    • RDF quality heuristics
  • Query
    • YASGUI SPARQL Editor
    • Simple Form
    • SWISH Prolog shell
  • Help
    • Documentation
    • Tutorial
    • Roadmap
    • HTTP Services
  • Login

/usr/lib/swipl/library/clp/clpfd.pl
AllApplicationManualNameSummaryHelp

  • library
    • clp
      • clpfd.pl -- CLP(FD): Constraint Logic Programming over Finite Domains
        • in/2
        • ins/2
        • indomain/1
        • label/1
        • labeling/2
        • all_different/1
        • all_distinct/1
        • sum/3
        • scalar_product/4
        • #>=/2
        • #=</2
        • #=/2
        • #\=/2
        • #>/2
        • #</2
        • #\/1
        • #<==>/2
        • #==>/2
        • #<==/2
        • #/\/2
        • #\//2
        • #\/2
        • lex_chain/1
        • tuples_in/2
        • serialized/2
        • element/3
        • global_cardinality/2
        • global_cardinality/3
        • circuit/1
        • cumulative/1
        • cumulative/2
        • disjoint2/1
        • automaton/3
        • automaton/8
        • transpose/2
        • zcompare/3
        • chain/2
        • fd_var/1
        • fd_inf/2
        • fd_sup/2
        • fd_size/2
        • fd_dom/2
      • clpb.pl -- CLP(B): Constraint Logic Programming over Boolean Variables
 serialized(+Starts, +Durations)
Describes a set of non-overlapping tasks. Starts = [S_1,...,S_n], is a list of variables or integers, Durations = [D_1,...,D_n] is a list of non-negative integers. Constrains Starts and Durations to denote a set of non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j + D_j =< S_i for all 1 =< i < j =< n. Example:
?- length(Vs, 3),
   Vs ins 0..3,
   serialized(Vs, [1,2,3]),
   label(Vs).
Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.
See also
- Dorndorf et al. 2000, "Constraint Propagation Techniques for the Disjunctive Scheduling Problem"
ClioPatria (version V3.1.1-40-g9d9e003)