- library
- clp
- clpfd.pl -- CLP(FD): Constraint Logic Programming over Finite Domains
- in/2
- ins/2
- indomain/1
- label/1
- labeling/2
- all_different/1
- all_distinct/1
- sum/3
- scalar_product/4
- #>=/2
- #=</2
- #=/2
- #\=/2
- #>/2
- #</2
- #\/1
- #<==>/2
- #==>/2
- #<==/2
- #/\/2
- #\//2
- #\/2
- lex_chain/1
- tuples_in/2
- serialized/2
- element/3
- global_cardinality/2
- global_cardinality/3
- circuit/1
- cumulative/1
- cumulative/2
- disjoint2/1
- automaton/3
- automaton/8
- transpose/2
- zcompare/3
- chain/2
- fd_var/1
- fd_inf/2
- fd_sup/2
- fd_size/2
- fd_dom/2
- clpb.pl -- CLP(B): Constraint Logic Programming over Boolean Variables
- clpfd.pl -- CLP(FD): Constraint Logic Programming over Finite Domains
- clp
- #<==>(?P, ?Q)
- P and Q are equivalent. See reification.
For example:
?- X #= 4 #<==> B, X #\= 4. B = 0, X in inf..3\/5..sup.
The following example uses reified constraints to relate a list of finite domain variables to the number of occurrences of a given value:
vs_n_num(Vs, N, Num) :- maplist(eq_b(N), Vs, Bs), sum(Bs, #=, Num). eq_b(X, Y, B) :- X #= Y #<==> B.
Sample queries and their results:
?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num). Vs = [X, Y, Z], Num = 0, X in 0..1, Y in 0..1, Z in 0..1. ?- vs_n_num([X,Y,Z], 2, 3). X = 2, Y = 2, Z = 2.