/* Part of SWI-Prolog Author: Jan Wielemaker and Richard O'Keefe E-mail: J.Wielemaker@cs.vu.nl WWW: http://www.swi-prolog.org Copyright (c) 2002-2020, University of Amsterdam VU University Amsterdam SWI-Prolog Solutions b.v. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(lists, [ member/2, % ?X, ?List memberchk/2, % ?X, ?List append/2, % +ListOfLists, -List append/3, % ?A, ?B, ?AB prefix/2, % ?Part, ?Whole select/3, % ?X, ?List, ?Rest selectchk/3, % ?X, ?List, ?Rest select/4, % ?X, ?XList, ?Y, ?YList selectchk/4, % ?X, ?XList, ?Y, ?YList nextto/3, % ?X, ?Y, ?List delete/3, % ?List, ?X, ?Rest nth0/3, % ?N, ?List, ?Elem nth1/3, % ?N, ?List, ?Elem nth0/4, % ?N, ?List, ?Elem, ?Rest nth1/4, % ?N, ?List, ?Elem, ?Rest last/2, % +List, -Element proper_length/2, % @List, -Length same_length/2, % ?List1, ?List2 reverse/2, % +List, -Reversed permutation/2, % ?List, ?Permutation flatten/2, % +Nested, -Flat clumped/2, % +Items,-Pairs % Ordered operations max_member/2, % -Max, +List min_member/2, % -Min, +List % Lists of numbers sum_list/2, % +List, -Sum max_list/2, % +List, -Max min_list/2, % +List, -Min numlist/3, % +Low, +High, -List % set manipulation is_set/1, % +List list_to_set/2, % +List, -Set intersection/3, % +List1, +List2, -Intersection union/3, % +List1, +List2, -Union subset/2, % +SubSet, +Set subtract/3 % +Set, +Delete, -Remaining ]). :- autoload(library(error),[must_be/2]). :- autoload(library(pairs),[pairs_keys/2]). :- set_prolog_flag(generate_debug_info, false). /** List Manipulation This library provides commonly accepted basic predicates for list manipulation in the Prolog community. Some additional list manipulations are built-in. See e.g., memberchk/2, length/2. The implementation of this library is copied from many places. These include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL) and the YAP lists library. Some predicates are reimplemented based on their specification by Quintus and SICStus. @compat Virtually every Prolog system has library(lists), but the set of provided predicates is diverse. There is a fair agreement on the semantics of most of these predicates, although error handling may vary. */ %! member(?Elem, ?List) % % True if Elem is a member of List. The SWI-Prolog definition % differs from the classical one. Our definition avoids unpacking % each list element twice and provides determinism on the last % element. E.g. this is deterministic: % % == % member(X, [One]). % == % % @author Gertjan van Noord member(El, [H|T]) :- member_(T, El, H). member_(_, El, El). member_([H|T], El, _) :- member_(T, El, H). %! append(?List1, ?List2, ?List1AndList2) % % List1AndList2 is the concatenation of List1 and List2 append([], L, L). append([H|T], L, [H|R]) :- append(T, L, R). %! append(+ListOfLists, ?List) % % Concatenate a list of lists. Is true if ListOfLists is a list of % lists, and List is the concatenation of these lists. % % @param ListOfLists must be a list of _possibly_ partial lists append(ListOfLists, List) :- must_be(list, ListOfLists), append_(ListOfLists, List). append_([], []). append_([L|Ls], As) :- append(L, Ws, As), append_(Ls, Ws). %! prefix(?Part, ?Whole) % % True iff Part is a leading substring of Whole. This is the same % as append(Part, _, Whole). prefix([], _). prefix([E|T0], [E|T]) :- prefix(T0, T). %! select(?Elem, ?List1, ?List2) % % Is true when List1, with Elem removed, results in List2. This % implementation is determinsitic if the last element of List1 has % been selected. select(X, [Head|Tail], Rest) :- select3_(Tail, Head, X, Rest). select3_(Tail, Head, Head, Tail). select3_([Head2|Tail], Head, X, [Head|Rest]) :- select3_(Tail, Head2, X, Rest). %! selectchk(+Elem, +List, -Rest) is semidet. % % Semi-deterministic removal of first element in List that unifies % with Elem. selectchk(Elem, List, Rest) :- select(Elem, List, Rest0), !, Rest = Rest0. %! select(?X, ?XList, ?Y, ?YList) is nondet. % % Select from two lists at the same positon. True if XList is % unifiable with YList apart a single element at the same position % that is unified with X in XList and with Y in YList. A typical % use for this predicate is to _replace_ an element, as shown in % the example below. All possible substitutions are performed on % backtracking. % % == % ?- select(b, [a,b,c,b], 2, X). % X = [a, 2, c, b] ; % X = [a, b, c, 2] ; % false. % == % % @see selectchk/4 provides a semidet version. select(X, XList, Y, YList) :- select4_(XList, X, Y, YList). select4_([X|List], X, Y, [Y|List]). select4_([X0|XList], X, Y, [X0|YList]) :- select4_(XList, X, Y, YList). %! selectchk(?X, ?XList, ?Y, ?YList) is semidet. % % Semi-deterministic version of select/4. selectchk(X, XList, Y, YList) :- select(X, XList, Y, YList), !. %! nextto(?X, ?Y, ?List) % % True if Y directly follows X in List. nextto(X, Y, [X,Y|_]). nextto(X, Y, [_|Zs]) :- nextto(X, Y, Zs). %! delete(+List1, @Elem, -List2) is det. % % Delete matching elements from a list. True when List2 is a list % with all elements from List1 except for those that unify with % Elem. Matching Elem with elements of List1 is uses =|\+ Elem \= % H|=, which implies that Elem is not changed. % % @deprecated There are too many ways in which one might want to % delete elements from a list to justify the name. % Think of matching (= vs. ==), delete first/all, % be deterministic or not. % @see select/3, subtract/3. delete([], _, []). delete([Elem|Tail], Del, Result) :- ( \+ Elem \= Del -> delete(Tail, Del, Result) ; Result = [Elem|Rest], delete(Tail, Del, Rest) ). /* nth0/3, nth1/3 are improved versions from Martin Jansche */ %! nth0(?Index, ?List, ?Elem) % % True when Elem is the Index'th element of List. Counting starts % at 0. % % @error type_error(integer, Index) if Index is not an integer or % unbound. % @see nth1/3. nth0(Index, List, Elem) :- ( integer(Index) -> nth0_det(Index, List, Elem) % take nth deterministically ; var(Index) -> List = [H|T], nth_gen(T, Elem, H, 0, Index) % match ; must_be(integer, Index) ). nth0_det(0, [Elem|_], Elem) :- !. nth0_det(1, [_,Elem|_], Elem) :- !. nth0_det(2, [_,_,Elem|_], Elem) :- !. nth0_det(3, [_,_,_,Elem|_], Elem) :- !. nth0_det(4, [_,_,_,_,Elem|_], Elem) :- !. nth0_det(5, [_,_,_,_,_,Elem|_], Elem) :- !. nth0_det(N, [_,_,_,_,_,_ |Tail], Elem) :- M is N - 6, M >= 0, nth0_det(M, Tail, Elem). nth_gen(_, Elem, Elem, Base, Base). nth_gen([H|Tail], Elem, _, N, Base) :- succ(N, M), nth_gen(Tail, Elem, H, M, Base). %! nth1(?Index, ?List, ?Elem) % % Is true when Elem is the Index'th element of List. Counting % starts at 1. % % @see nth0/3. nth1(Index, List, Elem) :- ( integer(Index) -> Index0 is Index - 1, nth0_det(Index0, List, Elem) % take nth deterministically ; var(Index) -> List = [H|T], nth_gen(T, Elem, H, 1, Index) % match ; must_be(integer, Index) ). %! nth0(?N, ?List, ?Elem, ?Rest) is det. % % Select/insert element at index. True when Elem is the N'th % (0-based) element of List and Rest is the remainder (as in by % select/3) of List. For example: % % == % ?- nth0(I, [a,b,c], E, R). % I = 0, E = a, R = [b, c] ; % I = 1, E = b, R = [a, c] ; % I = 2, E = c, R = [a, b] ; % false. % == % % == % ?- nth0(1, L, a1, [a,b]). % L = [a, a1, b]. % == nth0(V, In, Element, Rest) :- var(V), !, generate_nth(0, V, In, Element, Rest). nth0(V, In, Element, Rest) :- must_be(nonneg, V), find_nth0(V, In, Element, Rest). %! nth1(?N, ?List, ?Elem, ?Rest) is det. % % As nth0/4, but counting starts at 1. nth1(V, In, Element, Rest) :- var(V), !, generate_nth(1, V, In, Element, Rest). nth1(V, In, Element, Rest) :- must_be(positive_integer, V), succ(V0, V), find_nth0(V0, In, Element, Rest). generate_nth(I, I, [Head|Rest], Head, Rest). generate_nth(I, IN, [H|List], El, [H|Rest]) :- I1 is I+1, generate_nth(I1, IN, List, El, Rest). find_nth0(0, [Head|Rest], Head, Rest) :- !. find_nth0(N, [Head|Rest0], Elem, [Head|Rest]) :- M is N-1, find_nth0(M, Rest0, Elem, Rest). %! last(?List, ?Last) % % Succeeds when Last is the last element of List. This % predicate is =semidet= if List is a list and =multi= if List is % a partial list. % % @compat There is no de-facto standard for the argument order of % last/2. Be careful when porting code or use % append(_, [Last], List) as a portable alternative. last([X|Xs], Last) :- last_(Xs, X, Last). last_([], Last, Last). last_([X|Xs], _, Last) :- last_(Xs, X, Last). %! proper_length(@List, -Length) is semidet. % % True when Length is the number of elements in the proper list % List. This is equivalent to % % == % proper_length(List, Length) :- % is_list(List), % length(List, Length). % == proper_length(List, Length) :- '$skip_list'(Length0, List, Tail), Tail == [], Length = Length0. %! same_length(?List1, ?List2) % % Is true when List1 and List2 are lists with the same number of % elements. The predicate is deterministic if at least one of the % arguments is a proper list. It is non-deterministic if both % arguments are partial lists. % % @see length/2 same_length([], []). same_length([_|T1], [_|T2]) :- same_length(T1, T2). %! reverse(?List1, ?List2) % % Is true when the elements of List2 are in reverse order compared to % List1. reverse(Xs, Ys) :- reverse(Xs, [], Ys, Ys). reverse([], Ys, Ys, []). reverse([X|Xs], Rs, Ys, [_|Bound]) :- reverse(Xs, [X|Rs], Ys, Bound). %! permutation(?Xs, ?Ys) is nondet. % % True when Xs is a permutation of Ys. This can solve for Ys given % Xs or Xs given Ys, or even enumerate Xs and Ys together. The % predicate permutation/2 is primarily intended to generate % permutations. Note that a list of length N has N! permutations, % and unbounded permutation generation becomes prohibitively % expensive, even for rather short lists (10! = 3,628,800). % % If both Xs and Ys are provided and both lists have equal length % the order is |Xs|^2. Simply testing whether Xs is a permutation % of Ys can be achieved in order log(|Xs|) using msort/2 as % illustrated below with the =semidet= predicate is_permutation/2: % % == % is_permutation(Xs, Ys) :- % msort(Xs, Sorted), % msort(Ys, Sorted). % == % % The example below illustrates that Xs and Ys being proper lists % is not a sufficient condition to use the above replacement. % % == % ?- permutation([1,2], [X,Y]). % X = 1, Y = 2 ; % X = 2, Y = 1 ; % false. % == % % @error type_error(list, Arg) if either argument is not a proper % or partial list. permutation(Xs, Ys) :- '$skip_list'(Xlen, Xs, XTail), '$skip_list'(Ylen, Ys, YTail), ( XTail == [], YTail == [] % both proper lists -> Xlen == Ylen ; var(XTail), YTail == [] % partial, proper -> length(Xs, Ylen) ; XTail == [], var(YTail) % proper, partial -> length(Ys, Xlen) ; var(XTail), var(YTail) % partial, partial -> length(Xs, Len), length(Ys, Len) ; must_be(list, Xs), % either is not a list must_be(list, Ys) ), perm(Xs, Ys). perm([], []). perm(List, [First|Perm]) :- select(First, List, Rest), perm(Rest, Perm). %! flatten(+NestedList, -FlatList) is det. % % Is true if FlatList is a non-nested version of NestedList. Note % that empty lists are removed. In standard Prolog, this implies % that the atom '[]' is removed too. In SWI7, `[]` is distinct % from '[]'. % % Ending up needing flatten/2 often indicates, like append/3 for % appending two lists, a bad design. Efficient code that generates % lists from generated small lists must use difference lists, % often possible through grammar rules for optimal readability. % % @see append/2 flatten(List, FlatList) :- flatten(List, [], FlatList0), !, FlatList = FlatList0. flatten(Var, Tl, [Var|Tl]) :- var(Var), !. flatten([], Tl, Tl) :- !. flatten([Hd|Tl], Tail, List) :- !, flatten(Hd, FlatHeadTail, List), flatten(Tl, Tail, FlatHeadTail). flatten(NonList, Tl, [NonList|Tl]). /******************************* * CLUMPS * *******************************/ %! clumped(+Items, -Pairs) % % Pairs is a list of `Item-Count` pairs that represents the _run % length encoding_ of Items. For example: % % ``` % ?- clumped([a,a,b,a,a,a,a,c,c,c], R). % R = [a-2, b-1, a-4, c-3]. % ``` % % @compat SICStus clumped(Items, Counts) :- clump(Items, Counts). clump([], []). clump([H|T0], [H-C|T]) :- ccount(T0, H, T1, 1, C), clump(T1, T). ccount([H|T0], E, T, C0, C) :- E == H, !, C1 is C0+1, ccount(T0, E, T, C1, C). ccount(List, _, List, C, C). /******************************* * ORDER OPERATIONS * *******************************/ %! max_member(-Max, +List) is semidet. % % True when Max is the largest member in the standard order of % terms. Fails if List is empty. % % @see compare/3 % @see max_list/2 for the maximum of a list of numbers. max_member(Max, [H|T]) :- max_member_(T, H, Max). max_member_([], Max, Max). max_member_([H|T], Max0, Max) :- ( H @=< Max0 -> max_member_(T, Max0, Max) ; max_member_(T, H, Max) ). %! min_member(-Min, +List) is semidet. % % True when Min is the smallest member in the standard order of % terms. Fails if List is empty. % % @see compare/3 % @see min_list/2 for the minimum of a list of numbers. min_member(Min, [H|T]) :- min_member_(T, H, Min). min_member_([], Min, Min). min_member_([H|T], Min0, Min) :- ( H @>= Min0 -> min_member_(T, Min0, Min) ; min_member_(T, H, Min) ). /******************************* * LISTS OF NUMBERS * *******************************/ %! sum_list(+List, -Sum) is det. % % Sum is the result of adding all numbers in List. sum_list(Xs, Sum) :- sum_list(Xs, 0, Sum). sum_list([], Sum, Sum). sum_list([X|Xs], Sum0, Sum) :- Sum1 is Sum0 + X, sum_list(Xs, Sum1, Sum). %! max_list(+List:list(number), -Max:number) is semidet. % % True if Max is the largest number in List. Fails if List is % empty. % % @see max_member/2. max_list([H|T], Max) :- max_list(T, H, Max). max_list([], Max, Max). max_list([H|T], Max0, Max) :- Max1 is max(H, Max0), max_list(T, Max1, Max). %! min_list(+List:list(number), -Min:number) is semidet. % % True if Min is the smallest number in List. Fails if List is % empty. % % @see min_member/2. min_list([H|T], Min) :- min_list(T, H, Min). min_list([], Min, Min). min_list([H|T], Min0, Min) :- Min1 is min(H, Min0), min_list(T, Min1, Min). %! numlist(+Low, +High, -List) is semidet. % % List is a list [Low, Low+1, ... High]. Fails if High < Low. % % @error type_error(integer, Low) % @error type_error(integer, High) numlist(L, U, Ns) :- must_be(integer, L), must_be(integer, U), L =< U, numlist_(L, U, Ns). numlist_(U, U, List) :- !, List = [U]. numlist_(L, U, [L|Ns]) :- L2 is L+1, numlist_(L2, U, Ns). /******************************** * SET MANIPULATION * *********************************/ %! is_set(@Set) is semidet. % % True if Set is a proper list without duplicates. Equivalence is % based on ==/2. The implementation uses sort/2, which implies % that the complexity is N*log(N) and the predicate may cause a % resource-error. There are no other error conditions. is_set(Set) :- '$skip_list'(Len, Set, Tail), Tail == [], % Proper list sort(Set, Sorted), length(Sorted, Len). %! list_to_set(+List, ?Set) is det. % % True when Set has the same elements as List in the same order. % The left-most copy of duplicate elements is retained. List may % contain variables. Elements _E1_ and _E2_ are considered % duplicates iff _E1_ == _E2_ holds. The complexity of the % implementation is N*log(N). % % @see sort/2 can be used to create an ordered set. Many % set operations on ordered sets are order N rather than % order N**2. The list_to_set/2 predicate is more % expensive than sort/2 because it involves, two sorts % and a linear scan. % @compat Up to version 6.3.11, list_to_set/2 had complexity % N**2 and equality was tested using =/2. % @error List is type-checked. list_to_set(List, Set) :- must_be(list, List), number_list(List, 1, Numbered), sort(1, @=<, Numbered, ONum), remove_dup_keys(ONum, NumSet), sort(2, @=<, NumSet, ONumSet), pairs_keys(ONumSet, Set). number_list([], _, []). number_list([H|T0], N, [H-N|T]) :- N1 is N+1, number_list(T0, N1, T). remove_dup_keys([], []). remove_dup_keys([H|T0], [H|T]) :- H = V-_, remove_same_key(T0, V, T1), remove_dup_keys(T1, T). remove_same_key([V1-_|T0], V, T) :- V1 == V, !, remove_same_key(T0, V, T). remove_same_key(L, _, L). %! intersection(+Set1, +Set2, -Set3) is det. % % True if Set3 unifies with the intersection of Set1 and Set2. The % complexity of this predicate is |Set1|*|Set2|. A _set_ is defined to % be an unordered list without duplicates. Elements are considered % duplicates if they can be unified. % % @see ord_intersection/3. intersection([], _, []) :- !. intersection([X|T], L, Intersect) :- memberchk(X, L), !, Intersect = [X|R], intersection(T, L, R). intersection([_|T], L, R) :- intersection(T, L, R). %! union(+Set1, +Set2, -Set3) is det. % % True if Set3 unifies with the union of the lists Set1 and Set2. The % complexity of this predicate is |Set1|*|Set2|. A _set_ is defined to % be an unordered list without duplicates. Elements are considered % duplicates if they can be unified. % % @see ord_union/3 union([], L, L) :- !. union([H|T], L, R) :- memberchk(H, L), !, union(T, L, R). union([H|T], L, [H|R]) :- union(T, L, R). %! subset(+SubSet, +Set) is semidet. % % True if all elements of SubSet belong to Set as well. Membership % test is based on memberchk/2. The complexity is |SubSet|*|Set|. A % _set_ is defined to be an unordered list without duplicates. % Elements are considered duplicates if they can be unified. % % @see ord_subset/2. subset([], _) :- !. subset([E|R], Set) :- memberchk(E, Set), subset(R, Set). %! subtract(+Set, +Delete, -Result) is det. % % Delete all elements in Delete from Set. Deletion is based on % unification using memberchk/2. The complexity is |Delete|*|Set|. A % _set_ is defined to be an unordered list without duplicates. % Elements are considered duplicates if they can be unified. % % @see ord_subtract/3. subtract([], _, []) :- !. subtract([E|T], D, R) :- memberchk(E, D), !, subtract(T, D, R). subtract([H|T], D, [H|R]) :- subtract(T, D, R).