View source with raw comments or as raw
    1/*  Part of SWI-Prolog
    2
    3    Author:        Jan Wielemaker
    4    E-mail:        J.Wielemaker@vu.nl
    5    WWW:           http://www.swi-prolog.org
    6    Copyright (c)  2006-2020, University of Amsterdam
    7                              VU University Amsterdam
    8    All rights reserved.
    9
   10    Redistribution and use in source and binary forms, with or without
   11    modification, are permitted provided that the following conditions
   12    are met:
   13
   14    1. Redistributions of source code must retain the above copyright
   15       notice, this list of conditions and the following disclaimer.
   16
   17    2. Redistributions in binary form must reproduce the above copyright
   18       notice, this list of conditions and the following disclaimer in
   19       the documentation and/or other materials provided with the
   20       distribution.
   21
   22    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   23    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   24    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   25    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
   26    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   27    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   28    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   29    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   30    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   32    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   33    POSSIBILITY OF SUCH DAMAGE.
   34*/
   35
   36:- module(error,
   37          [ instantiation_error/1,      % +FormalSubTerm
   38            uninstantiation_error/1,    % +Culprit
   39            type_error/2,               % +ValidType, +Culprit
   40            domain_error/2,             % +ValidDomain, +Culprit
   41            existence_error/2,          % +ObjectType, +Culprit
   42            existence_error/3,          % +ObjectType, +Culprit, +Set
   43            permission_error/3,         % +Operation, +PermissionType, +Culprit
   44            representation_error/1,     % +Flag
   45            resource_error/1,           % +Resource
   46            syntax_error/1,             % +ImplDepAtom
   47
   48            must_be/2,                  % +Type, +Term
   49            is_of_type/2,               % +Type, +Term
   50            current_type/3              % ?Type, @Var, -Body
   51          ]).   52:- set_prolog_flag(generate_debug_info, false).

Error generating support

This module provides predicates to simplify error generation and checking. It's implementation is based on a discussion on the SWI-Prolog mailinglist on best practices in error handling. The utility predicate must_be/2 provides simple run-time type validation. The *_error predicates are simple wrappers around throw/1 to simplify throwing the most common ISO error terms.

author
- Jan Wielemaker
- Richard O'Keefe
- Ulrich Neumerkel
See also
- library(debug) and library(prolog_stack).
- print_message/2 is used to print (uncaught) error terms. */
   70:- multifile
   71    has_type/2.   72
   73                 /*******************************
   74                 *           ISO ERRORS         *
   75                 *******************************/
 type_error(+ValidType, +Culprit)
Tell the user that Culprit is not of the expected ValidType. This error is closely related to domain_error/2 because the notion of types is not really set in stone in Prolog. We introduce the difference using a simple example.

Suppose an argument must be a non-negative integer. If the actual argument is not an integer, this is a type_error. If it is a negative integer, it is a domain_error.

Typical borderline cases are predicates accepting a compound term, e.g., point(X,Y). One could argue that the basic type is a compound-term and any other compound term is a domain error. Most Prolog programmers consider each compound as a type and would consider a compound that is not point(_,_) a type_error.

   94type_error(ValidType, Culprit) :-
   95    throw(error(type_error(ValidType, Culprit), _)).
 domain_error(+ValidDomain, +Culprit)
The argument is of the proper type, but has a value that is outside the supported values. See type_error/2 for a more elaborate discussion of the distinction between type- and domain-errors.
  103domain_error(ValidDomain, Culprit) :-
  104    throw(error(domain_error(ValidDomain, Culprit), _)).
 existence_error(+ObjectType, +Culprit)
Culprit is of the correct type and correct domain, but there is no existing (external) resource of type ObjectType that is represented by it.
  112existence_error(ObjectType, Culprit) :-
  113    throw(error(existence_error(ObjectType, Culprit), _)).
 existence_error(+ObjectType, +Culprit, +Set)
Culprit is of the correct type and correct domain, but there is no existing (external) resource of type ObjectType that is represented by it in the provided set. The thrown exception term carries a formal term structured as follows: existence_error(ObjectType, Culprit, Set)
Compatibility
- This error is outside the ISO Standard.
  125existence_error(ObjectType, Culprit, Set) :-
  126    throw(error(existence_error(ObjectType, Culprit, Set), _)).
 permission_error(+Operation, +PermissionType, +Culprit)
It is not allowed to perform Operation on (whatever is represented by) Culprit that is of the given PermissionType (in fact, the ISO Standard is confusing and vague about these terms' meaning).
  134permission_error(Operation, PermissionType, Culprit) :-
  135    throw(error(permission_error(Operation, PermissionType, Culprit), _)).
 instantiation_error(+FormalSubTerm)
An argument is under-instantiated. I.e. it is not acceptable as it is, but if some variables are bound to appropriate values it would be acceptable.
Arguments:
FormalSubTerm- is the term that needs (further) instantiation. Unfortunately, the ISO error does not allow for passing this term along with the error, but we pass it to this predicate for documentation purposes and to allow for future enhancement.
  149instantiation_error(_FormalSubTerm) :-
  150    throw(error(instantiation_error, _)).
 uninstantiation_error(+Culprit)
An argument is over-instantiated. This error is used for output arguments whose value cannot be known upfront. For example, the goal open(File, read, input) cannot succeed because the system will allocate a new unique stream handle that will never unify with input.
  160uninstantiation_error(Culprit) :-
  161    throw(error(uninstantiation_error(Culprit), _)).
 representation_error(+Flag)
A representation error indicates a limitation of the implementation. SWI-Prolog has no such limits that are not covered by other errors, but an example of a representation error in another Prolog implementation could be an attempt to create a term with an arity higher than supported by the system.
  171representation_error(Flag) :-
  172    throw(error(representation_error(Flag), _)).
 syntax_error(+Culprit)
A text has invalid syntax. The error is described by Culprit. According to the ISO Standard, Culprit should be an implementation-dependent atom.
To be done
- Deal with proper description of the location of the error. For short texts, we allow for Type(Text), meaning Text is not a valid Type. E.g. syntax_error(number('1a')) means that 1a is not a valid number.
  185syntax_error(Culprit) :-
  186    throw(error(syntax_error(Culprit), _)).
 resource_error(+Resource)
A goal cannot be completed due to lack of resources. According to the ISO Standard, Resource should be an implementation-dependent atom.
  194resource_error(Resource) :-
  195    throw(error(resource_error(Resource), _)).
  196
  197
  198                 /*******************************
  199                 *            MUST-BE           *
  200                 *******************************/
 must_be(+Type, @Term) is det
True if Term satisfies the type constraints for Type. Defined types are atom, atomic, between, boolean, callable, chars, codes, text, compound, constant, float, integer, nonneg, positive_integer, negative_integer, nonvar, number, oneof, list, list_or_partial_list, symbol, var, rational, encoding, dict and string.

Most of these types are defined by an arity-1 built-in predicate of the same name. Below is a brief definition of the other types.

acyclicAcyclic term (tree); see acyclic_term/1
anyany term
between(FloatL,FloatU)Number [FloatL..FloatU]
between(IntL,IntU)Integer [IntL..IntU]
booleanOne of true or false
charAtom of length 1
charsProper list of 1-character atoms
codeRepresentation Unicode code point
codesProper list of Unicode character codes
constantSame as atomic
cyclicCyclic term (rational tree); see cyclic_term/1
dictA dictionary term; see is_dict/1
encodingValid name for a character encoding; see current_encoding/1
listA (non-open) list; see is_list/1
negative_integerInteger < 0
nonnegInteger >= 0
oneof(L)Ground term that is member of L
pairKey-Value pair
positive_integerInteger > 0
proper_listSame as list
list(Type)Proper list with elements of Type
list_or_partial_listA list or an open list (ending in a variable); see is_list_or_partial_list/1
streamA stream name or valid stream handle; see is_stream/1
symbolSame as atom
textOne of atom, string, chars or codes
typeTerm is a valid type specification

Note: The Windows version can only represent Unicode code points up to 2^16-1. Higher values cause a representation error on most text handling predicates.

throws
- instantiation_error if Term is insufficiently instantiated and type_error(Type, Term) if Term is not of Type.
  249must_be(Type, X) :-
  250    (   nonvar(Type),
  251        has_type(Type, X)
  252    ->  true
  253    ;   nonvar(Type)
  254    ->  is_not(Type, X)
  255    ;   instantiation_error(Type)
  256    ).
 is_not(+Type, @Term)
Throws appropriate error. It is known that Term is not of type Type.
throws
- type_error(Type, Term)
- instantiation_error
  266is_not(list, X) :-
  267    !,
  268    not_a_list(list, X).
  269is_not(list(Of), X) :-
  270    !,
  271    not_a_list(list(Of), X).
  272is_not(list_or_partial_list, X) :-
  273    !,
  274    type_error(list, X).
  275is_not(chars, X) :-
  276    !,
  277    not_a_list(list(char), X).
  278is_not(codes, X) :-
  279    !,
  280    not_a_list(list(code), X).
  281is_not(var,X) :-
  282    !,
  283    uninstantiation_error(X).
  284is_not(cyclic, X) :-
  285    domain_error(cyclic_term, X).
  286is_not(acyclic, X) :-
  287    domain_error(acyclic_term, X).
  288is_not(Type, X) :-
  289    current_type(Type, _Var, _Body),
  290    !,
  291    (   var(X)
  292    ->  instantiation_error(X)
  293    ;   ground_type(Type), \+ ground(X)
  294    ->  instantiation_error(X)
  295    ;   type_error(Type, X)
  296    ).
  297is_not(Type, _) :-
  298    existence_error(type, Type).
  299
  300ground_type(ground).
  301ground_type(oneof(_)).
  302ground_type(stream).
  303ground_type(text).
  304ground_type(string).
  305ground_type(rational).
  306
  307not_a_list(Type, X) :-
  308    '$skip_list'(_, X, Rest),
  309    (   var(Rest)
  310    ->  instantiation_error(X)
  311    ;   Rest == []
  312    ->  Type = list(Of),
  313        (   nonvar(Of)
  314        ->  element_is_not(X, Of)
  315        ;   instantiation_error(Of)
  316        )
  317    ;   type_error(Type, X)
  318    ).
  319
  320
  321element_is_not([H|T], Of) :-
  322    has_type(Of, H),
  323    !,
  324    element_is_not(T, Of).
  325element_is_not([H|_], Of) :-
  326    !,
  327    is_not(Of, H).
  328element_is_not(_List, _Of) :-
  329    assertion(fail).
 is_of_type(+Type, @Term) is semidet
True if Term satisfies Type.
  335is_of_type(Type, Term) :-
  336    nonvar(Type),
  337    !,
  338    has_type(Type, Term),
  339    !.
  340is_of_type(Type, _) :-
  341    instantiation_error(Type).
 has_type(+Type, @Term) is semidet
True if Term satisfies Type.
  347:- '$clausable'(has_type/2).            % always allow clause/2
  348:- public                               % May be called through current_type/3
  349    is_list_or_partial_list/1,
  350    current_encoding/1,
  351    element_types/2.  352
  353has_type(any, _).
  354has_type(atom, X)         :- atom(X).
  355has_type(atomic, X)       :- atomic(X).
  356has_type(between(L,U), X) :- (   integer(L)
  357    ->  integer(X), between(L,U,X)
  358    ;   number(X), X >= L, X =< U
  359    ).
  360has_type(boolean, X)      :- (X==true;X==false), !.
  361has_type(callable, X)     :- callable(X).
  362has_type(char,  X)        :- '$is_char'(X).
  363has_type(code,  X)        :- '$is_char_code'(X).
  364has_type(chars, X)        :- '$is_char_list'(X, _Len).
  365has_type(codes, X)        :- '$is_code_list'(X, _Len).
  366has_type(text, X)         :- text(X).
  367has_type(compound, X)     :- compound(X).
  368has_type(constant, X)     :- atomic(X).
  369has_type(float, X)        :- float(X).
  370has_type(ground, X)       :- ground(X).
  371has_type(cyclic, X)       :- cyclic_term(X).
  372has_type(acyclic, X)      :- acyclic_term(X).
  373has_type(integer, X)      :- integer(X).
  374has_type(nonneg, X)       :- integer(X), X >= 0.
  375has_type(positive_integer, X)     :- integer(X), X > 0.
  376has_type(negative_integer, X)     :- integer(X), X < 0.
  377has_type(nonvar, X)       :- nonvar(X).
  378has_type(number, X)       :- number(X).
  379has_type(oneof(L), X)     :- ground(X), \+ \+ memberchk(X, L).
  380has_type(pair, X)         :- nonvar(X), X = _-_.
  381has_type(proper_list, X)  :- is_list(X).
  382has_type(list, X)         :- is_list(X).
  383has_type(list_or_partial_list, X)  :- is_list_or_partial_list(X).
  384has_type(symbol, X)       :- atom(X).
  385has_type(var, X)          :- var(X).
  386has_type(rational, X)     :- rational(X).
  387has_type(string, X)       :- string(X).
  388has_type(stream, X)       :- is_stream(X).
  389has_type(encoding, X)     :- current_encoding(X).
  390has_type(dict, X)         :- is_dict(X).
  391has_type(list(Type), X)   :- is_list(X), element_types(X, Type).
  392has_type(type, Type)      :- ground(Type), current_type(Type,_,_).
  393
  394text(X) :-
  395    (   atom(X)
  396    ;   string(X)
  397    ;   '$is_char_list'(X, _)
  398    ;   '$is_code_list'(X, _)
  399    ),
  400    !.
  401
  402element_types(List, Type) :-
  403    nonvar(Type),
  404    !,
  405    element_types_(List, Type).
  406element_types(_List, Type) :-
  407    instantiation_error(Type).
  408
  409element_types_([], _).
  410element_types_([H|T], Type) :-
  411    has_type(Type, H),
  412    !,
  413    element_types_(T, Type).
  414
  415is_list_or_partial_list(L0) :-
  416    '$skip_list'(_, L0,L),
  417    ( var(L) -> true ; L == [] ).
 current_encoding(?Name) is nondet
True if Name is the name of a supported encoding. See encoding option of e.g., open/4.
  424current_encoding(octet).
  425current_encoding(ascii).
  426current_encoding(iso_latin_1).
  427current_encoding(text).
  428current_encoding(utf8).
  429current_encoding(unicode_be).
  430current_encoding(unicode_le).
  431current_encoding(wchar_t).
 current_type(?Type, @Var, -Body) is nondet
True when Type is a currently defined type and Var satisfies Type of the body term Body succeeds.
  439current_type(Type, Var, Body) :-
  440    clause(has_type(Type, Var), Body0),
  441    qualify(Body0, Body).
  442
  443qualify(Var, VarQ) :-
  444    var(Var),
  445    !,
  446    VarQ = Var.
  447qualify((A0,B0), (A,B)) :-
  448    qualify(A0, A),
  449    qualify(B0, B).
  450qualify(G0, G) :-
  451    predicate_property(system:G0, built_in),
  452    !,
  453    G = G0.
  454qualify(G, error:G).
  455
  456
  457		 /*******************************
  458		 *           SANDBOX		*
  459		 *******************************/
  460
  461:- multifile sandbox:safe_primitive/1.  462
  463sandbox:safe_primitive(error:current_type(_,_,_))