1/* Part of SWI-Prolog 2 3 Author: Markus Triska and Matt Lilley 4 WWW: http://www.swi-prolog.org 5 Copyright (c) 2004-2017, SWI-Prolog Foundation 6 VU University Amsterdam 7 All rights reserved. 8 9 Redistribution and use in source and binary forms, with or without 10 modification, are permitted provided that the following conditions 11 are met: 12 13 1. Redistributions of source code must retain the above copyright 14 notice, this list of conditions and the following disclaimer. 15 16 2. Redistributions in binary form must reproduce the above copyright 17 notice, this list of conditions and the following disclaimer in 18 the documentation and/or other materials provided with the 19 distribution. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 29 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 31 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 POSSIBILITY OF SUCH DAMAGE. 33*/ 34 35:- module(crypto, 36 [ crypto_n_random_bytes/2, % +N, -Bytes 37 crypto_data_hash/3, % +Data, -Hash, +Options 38 crypto_file_hash/3, % +File, -Hash, +Options 39 crypto_context_new/2, % -Context, +Options 40 crypto_data_context/3, % +Data, +C0, -C 41 crypto_context_hash/2, % +Context, -Hash 42 crypto_open_hash_stream/3, % +InStream, -HashStream, +Options 43 crypto_stream_hash/2, % +HashStream, -Hash 44 crypto_password_hash/2, % +Password, ?Hash 45 crypto_password_hash/3, % +Password, ?Hash, +Options 46 crypto_data_hkdf/4, % +Data, +Length, -Bytes, +Options 47 ecdsa_sign/4, % +Key, +Data, -Signature, +Options 48 ecdsa_verify/4, % +Key, +Data, +Signature, +Options 49 crypto_data_decrypt/6, % +CipherText, +Algorithm, +Key, +IV, -PlainText, +Options 50 crypto_data_encrypt/6, % +PlainText, +Algorithm, +Key, +IV, -CipherText, +Options 51 hex_bytes/2, % ?Hex, ?List 52 rsa_private_decrypt/4, % +Key, +Ciphertext, -Plaintext, +Enc 53 rsa_private_encrypt/4, % +Key, +Plaintext, -Ciphertext, +Enc 54 rsa_public_decrypt/4, % +Key, +Ciphertext, -Plaintext, +Enc 55 rsa_public_encrypt/4, % +Key, +Plaintext, -Ciphertext, +Enc 56 rsa_sign/4, % +Key, +Data, -Signature, +Options 57 rsa_verify/4, % +Key, +Data, +Signature, +Options 58 crypto_modular_inverse/3, % +X, +M, -Y 59 crypto_generate_prime/3, % +N, -P, +Options 60 crypto_is_prime/2, % +P, +Options 61 crypto_name_curve/2, % +Name, -Curve 62 crypto_curve_order/2, % +Curve, -Order 63 crypto_curve_generator/2, % +Curve, -Generator 64 crypto_curve_scalar_mult/4 % +Curve, +Scalar, +Point, -Result 65 ]). 66:- autoload(library(apply),[foldl/4,maplist/3]). 67:- autoload(library(base64),[base64_encoded/3]). 68:- autoload(library(error),[must_be/2,domain_error/2]). 69:- autoload(library(lists),[select/3,reverse/2]). 70:- autoload(library(option),[option/3,option/2]). 71 72:- use_foreign_library(foreign(crypto4pl)).
One way to relate such a list of bytes to an integer is to use CLP(FD) constraints as follows:
:- use_module(library(clpfd)). bytes_integer(Bs, N) :- foldl(pow, Bs, 0-0, N-_). pow(B, N0-I0, N-I) :- B in 0..255, N #= N0 + B*256^I0, I #= I0 + 1.
With this definition, you can generate a random 256-bit integer from a list of 32 random bytes:
?- crypto_n_random_bytes(32, Bs), bytes_integer(Bs, I). Bs = [98, 9, 35, 100, 126, 174, 48, 176, 246|...], I = 109798276762338328820827...(53 digits omitted).
The above relation also works in the other direction, letting you translate an integer to a list of bytes. In addition, you can use hex_bytes/2 to convert bytes to tokens that can be easily exchanged in your applications. This also works if you have compiled SWI-Prolog without support for large integers.
136/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 137 SHA256 is the current default for several hash-related predicates. 138 It is deemed sufficiently secure for the foreseeable future. Yet, 139 application programmers must be aware that the default may change in 140 future versions. The hash predicates all yield the algorithm they 141 used if a Prolog variable is used for the pertaining option. 142- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 143 144default_hash(sha256). 145 146functor_hash_options(F, Hash, Options0, [Option|Options]) :- 147 Option =.. [F,Hash], 148 ( select(Option, Options0, Options) -> 149 ( var(Hash) -> 150 default_hash(Hash) 151 ; must_be(atom, Hash) 152 ) 153 ; Options = Options0, 154 default_hash(Hash) 155 ).
md5
(insecure), sha1
(insecure), ripemd160
,
sha224
, sha256
, sha384
, sha512
, sha3_224
, sha3_256
,
sha3_384
, sha3_512
, blake2s256
or blake2b512
. The BLAKE
digest algorithms require OpenSSL 1.1.0 or greater, and the SHA-3
algorithms require OpenSSL 1.1.1 or greater. The default is a
cryptographically secure algorithm. If you specify a variable,
then that variable is unified with the algorithm that was used.utf8
. The
other meaningful value is octet
, claiming that Data contains
raw bytes.
192crypto_data_hash(Data, Hash, Options) :-
193 crypto_context_new(Context0, Options),
194 crypto_data_context(Data, Context0, Context),
195 crypto_context_hash(Context, Hash).
202crypto_file_hash(File, Hash, Options) :- 203 setup_call_cleanup(open(File, read, In, [type(binary)]), 204 crypto_stream_hash(In, Hash, Options), 205 close(In)). 206 207crypto_stream_hash(Stream, Hash, Options) :- 208 crypto_context_new(Context0, Options), 209 update_hash(Stream, Context0, Context), 210 crypto_context_hash(Context, Hash). 211 212update_hash(In, Context0, Context) :- 213 ( at_end_of_stream(In) 214 -> Context = Context0 215 ; read_pending_codes(In, Data, []), 216 crypto_data_context(Data, Context0, Context1), 217 update_hash(In, Context1, Context) 218 ).
230crypto_context_new(Context, Options0) :-
231 functor_hash_options(algorithm, _, Options0, Options),
232 '_crypto_context_new'(Context, Options).
This predicate allows a hash to be computed in chunks, which may be important while working with Metalink (RFC 5854), BitTorrent or similar technologies, or simply with big files.
246crypto_data_context(Data, Context0, Context) :-
247 '_crypto_hash_context_copy'(Context0, Context),
248 '_crypto_update_hash_context'(Data, Context).
257crypto_context_hash(Context, Hash) :-
258 '_crypto_hash_context_copy'(Context, Copy),
259 '_crypto_hash_context_hash'(Copy, List),
260 hex_bytes(Hash, List).
true
(default), closing the filter stream also closes the
original (parent) stream.
272crypto_open_hash_stream(OrgStream, HashStream, Options) :-
273 crypto_context_new(Context, Options),
274 '_crypto_open_hash_stream'(OrgStream, HashStream, Context).
286crypto_stream_hash(Stream, Hash) :- 287 '_crypto_stream_hash_context'(Stream, Context), 288 crypto_context_hash(Context, Hash). 289 290/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 291 The so-called modular crypt format (MCF) is a standard for encoding 292 password hash strings. However, there's no official specification 293 document describing it. Nor is there a central registry of 294 identifiers or rules. This page describes what is known about it: 295 296 https://pythonhosted.org/passlib/modular_crypt_format.html 297 298 As of 2016, the MCF is deprecated in favor of the PHC String Format: 299 300 https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md 301 302 This is what we are using below. For the time being, it is best to 303 treat these hashes as opaque atoms in applications. Please let me 304 know if you need to rely on any specifics of this format. 305- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
crypto_password_hash(Password, Hash, [])
and computes a
password-based hash using the default options.
314crypto_password_hash(Password, Hash) :-
315 ( nonvar(Hash) ->
316 must_be(atom, Hash),
317 split_string(Hash, "$", "$", ["pbkdf2-sha512",Ps,SaltB64,HashB64]),
318 atom_to_term(Ps, t=Iterations, []),
319 bytes_base64(SaltBytes, SaltB64),
320 bytes_base64(HashBytes, HashB64),
321 '_crypto_password_hash'(Password, SaltBytes, Iterations, HashBytes)
322 ; crypto_password_hash(Password, Hash, [])
323 ).
Another important distinction is that equal passwords must yield, with very high probability, different hashes. For this reason, cryptographically strong random numbers are automatically added to the password before a hash is derived.
Hash is unified with an atom that contains the computed hash and all parameters that were used, except for the password. Instead of storing passwords, store these hashes. Later, you can verify the validity of a password with crypto_password_hash/2, comparing the then entered password to the stored hash. If you need to export this atom, you should treat it as opaque ASCII data with up to 255 bytes of length. The maximal length may increase in the future.
Admissible options are:
pbkdf2-sha512
, which is therefore also the default.Currently, PBKDF2 with SHA-512 is used as the hash derivation function, using 128 bits of salt. All default parameters, including the algorithm, are subject to change, and other algorithms will also become available in the future. Since computed hashes store all parameters that were used during their derivation, such changes will not affect the operation of existing deployments. Note though that new hashes will then be computed with the new default parameters.
376crypto_password_hash(Password, Hash, Options) :- 377 must_be(list, Options), 378 option(cost(C), Options, 17), 379 Iterations is 2^C, 380 Algorithm = 'pbkdf2-sha512', % current default and only option 381 option(algorithm(Algorithm), Options, Algorithm), 382 ( option(salt(SaltBytes), Options) -> 383 true 384 ; crypto_n_random_bytes(16, SaltBytes) 385 ), 386 '_crypto_password_hash'(Password, SaltBytes, Iterations, HashBytes), 387 bytes_base64(HashBytes, HashB64), 388 bytes_base64(SaltBytes, SaltB64), 389 format(atom(Hash), 390 "$pbkdf2-sha512$t=~d$~w$~w", [Iterations,SaltB64,HashB64]). 391 392 393/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 394 Bidirectional Bytes <-> Base64 conversion as required by PHC format. 395 396 Note that *no padding* must be used, and that we must be able 397 to encode the whole range of bytes, not only UTF-8 sequences! 398- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 399 400bytes_base64(Bytes, Base64) :- 401 ( var(Bytes) -> 402 base64_encoded(Atom, Base64, [padding(false)]), 403 atom_codes(Atom, Bytes) 404 ; atom_codes(Atom, Bytes), 405 base64_encoded(Atom, Base64, [padding(false)]) 406 ).
Admissible options are:
utf8
(default) or octet
, denoting
the representation of Data as in crypto_data_hash/3.
The info/1 option can be used to generate multiple keys from a
single master key, using for example values such as key
and
iv
, or the name of a file that is to be encrypted.
This predicate requires OpenSSL 1.1.0 or greater.
443crypto_data_hkdf(Data, L, Bytes, Options0) :-
444 functor_hash_options(algorithm, Algorithm, Options0, Options),
445 option(salt(SaltBytes), Options, []),
446 option(info(Info), Options, ''),
447 option(encoding(Enc), Options, utf8),
448 '_crypto_data_hkdf'(Data, SaltBytes, Info, Algorithm, Enc, L, Bytes).
hex
) assumes that Data is
an atom, string, character list or code list representing the
data in hexadecimal notation. See rsa_sign/4 for an example.
Options:
hex
. Alternatives
are octet
, utf8
and text
.465ecdsa_sign(private_key(ec(Private,Public0,Curve)), Data0, Signature, Options) :- 466 option(encoding(Enc0), Options, hex), 467 hex_encoding(Enc0, Data0, Enc, Data), 468 hex_bytes(Public0, Public), 469 '_crypto_ecdsa_sign'(ec(Private,Public,Curve), Data, Enc, Signature). 470 471hex_encoding(hex, Data0, octet, Data) :- !, 472 hex_bytes(Data0, Data). 473hex_encoding(Enc, Data, Enc, Data).
Options:
hex
. Alternatives
are octet
, utf8
and text
.
486ecdsa_verify(public_key(ec(Private,Public0,Curve)), Data0, Signature0, Options) :-
487 option(encoding(Enc0), Options, hex),
488 hex_encoding(Enc0, Data0, Enc, Data),
489 hex_bytes(Public0, Public),
490 hex_bytes(Signature0, Signature),
491 '_crypto_ecdsa_verify'(ec(Private,Public,Curve), Data, Enc, Signature).
Example:
?- hex_bytes('501ACE', Bs). Bs = [80, 26, 206].
515hex_bytes(Hs, Bytes) :- 516 ( ground(Hs) -> 517 string_chars(Hs, Chars), 518 ( phrase(hex_bytes(Chars), Bytes) 519 -> true 520 ; domain_error(hex_encoding, Hs) 521 ) 522 ; must_be(list(between(0,255)), Bytes), 523 phrase(bytes_hex(Bytes), Chars), 524 atom_chars(Hs, Chars) 525 ). 526 527hex_bytes([]) --> []. 528hex_bytes([H1,H2|Hs]) --> [Byte], 529 { char_type(H1, xdigit(High)), 530 char_type(H2, xdigit(Low)), 531 Byte is High*16 + Low }, 532 hex_bytes(Hs). 533 534bytes_hex([]) --> []. 535bytes_hex([B|Bs]) --> 536 { High is B>>4, 537 Low is B /\ 0xf, 538 char_type(C0, xdigit(High)), 539 char_type(C1, xdigit(Low)) 540 }, 541 [C0,C1], 542 bytes_hex(Bs).
Options:
utf8
. Alternatives
are utf8
and octet
.pkcs1
. Alternatives
are pkcs1_oaep
, sslv23
and none
. Note that none
should
only be used if you implement cryptographically sound padding
modes in your application code as encrypting unpadded data with
RSA is insecuresha1
, sha224
, sha256
, sha384
or sha512
. The
default is a cryptographically secure algorithm. If you
specify a variable, then it is unified with the algorithm that
was used.hex
. Alternatives
are octet
, utf8
and text
.
This predicate can be used to compute a sha256WithRSAEncryption
signature as follows:
sha256_with_rsa(PemKeyFile, Password, Data, Signature) :- Algorithm = sha256, read_key(PemKeyFile, Password, Key), crypto_data_hash(Data, Hash, [algorithm(Algorithm), encoding(octet)]), rsa_sign(Key, Hash, Signature, [type(Algorithm)]). read_key(File, Password, Key) :- setup_call_cleanup( open(File, read, In, [type(binary)]), load_private_key(In, Password, Key), close(In)).
Note that a hash that is computed by crypto_data_hash/3 can be directly used in rsa_sign/4 as well as ecdsa_sign/4.
610rsa_sign(Key, Data0, Signature, Options0) :-
611 functor_hash_options(type, Type, Options0, Options),
612 option(encoding(Enc0), Options, hex),
613 hex_encoding(Enc0, Data0, Enc, Data),
614 rsa_sign(Key, Type, Enc, Data, Signature).
Options:
sha1
,
sha224
, sha256
, sha384
or sha512
. The default is the
same as for rsa_sign/4. This option must match the algorithm
that was used for signing. When operating with different parties,
the used algorithm must be communicated over an authenticated
channel.hex
. Alternatives
are octet
, utf8
and text
.
635rsa_verify(Key, Data0, Signature0, Options0) :-
636 functor_hash_options(type, Type, Options0, Options),
637 option(encoding(Enc0), Options, hex),
638 hex_encoding(Enc0, Data0, Enc, Data),
639 hex_bytes(Signature0, Signature),
640 rsa_verify(Key, Type, Enc, Data, Signature).
utf8
.
Alternatives are utf8
and octet
.block
. You can disable padding by supplying none
here.676crypto_data_decrypt(CipherText, Algorithm, Key, IV, PlainText, Options) :- 677 ( option(tag(Tag), Options) -> 678 option(min_tag_length(MinTagLength), Options, 16), 679 length(Tag, TagLength), 680 compare(C, TagLength, MinTagLength), 681 tag_length_ok(C, Tag) 682 ; Tag = [] 683 ), 684 '_crypto_data_decrypt'(CipherText, Algorithm, Key, IV, 685 Tag, PlainText, Options). 686 687% This test is important to prevent truncation attacks of the tag. 688 689tag_length_ok(=, _). 690tag_length_ok(>, _). 691tag_length_ok(<, Tag) :- domain_error(tag_is_too_short, Tag).
PlainText must be a string, atom or list of codes or characters, and CipherText is created as a string. Key and IV are typically lists of bytes, though atoms and strings are also permitted. Algorithm must be an algorithm which your copy of OpenSSL knows about.
Keys and IVs can be chosen at random (using for example crypto_n_random_bytes/2) or derived from input keying material (IKM) using for example crypto_data_hkdf/4. This input is often a shared secret, such as a negotiated point on an elliptic curve, or the hash that was computed from a password via crypto_password_hash/3 with a freshly generated and specified salt.
Reusing the same combination of Key and IV typically leaks at least
some information about the plaintext. For example, identical
plaintexts will then correspond to identical ciphertexts. For some
algorithms, reusing an IV with the same Key has disastrous results
and can cause the loss of all properties that are otherwise
guaranteed. Especially in such cases, an IV is also called a
nonce (number used once). If an IV is not needed for your
algorithm (such as 'aes-128-ecb'
) then any value can be provided
as it will be ignored by the underlying implementation. Note that
such algorithms do not provide semantic security and are thus
insecure. You should use stronger algorithms instead.
It is safe to store and transfer the used initialization vector (or nonce) in plain text, but the key must be kept secret.
Commonly used algorithms include:
'chacha20-poly1305'
'aes-128-gcm'
'aes-128-cbc'
Options:
utf8
. Alternatives
are utf8
and octet
.block
. You can disable padding by supplying none
here. If
padding is disabled for block ciphers, then the length of the
ciphertext must be a multiple of the block size.For example, with OpenSSL 1.1.0 and greater, we can use the ChaCha20 stream cipher with the Poly1305 authenticator. This cipher uses a 256-bit key and a 96-bit nonce, i.e., 32 and 12 bytes, respectively:
?- Algorithm = 'chacha20-poly1305', crypto_n_random_bytes(32, Key), crypto_n_random_bytes(12, IV), crypto_data_encrypt("this is some input", Algorithm, Key, IV, CipherText, [tag(Tag)]), crypto_data_decrypt(CipherText, Algorithm, Key, IV, RecoveredText, [tag(Tag)]). Algorithm = 'chacha20-poly1305', Key = [65, 147, 140, 197, 27, 60, 198, 50, 218|...], IV = [253, 232, 174, 84, 168, 208, 218, 168, 228|...], CipherText = <binary string>, Tag = [248, 220, 46, 62, 255, 9, 178, 130, 250|...], RecoveredText = "this is some input".
In this example, we use crypto_n_random_bytes/2 to generate a key and nonce from cryptographically secure random numbers. For repeated applications, you must ensure that a nonce is only used once together with the same key. Note that for authenticated encryption schemes, the tag that was computed during encryption is necessary for decryption. It is safe to store and transfer the tag in plain text.
813crypto_data_encrypt(PlainText, Algorithm, Key, IV, CipherText, Options) :-
814 ( option(tag(AuthTag), Options) ->
815 option(tag_length(AuthLength), Options, 16)
816 ; AuthTag = _,
817 AuthLength = -1
818 ),
819 '_crypto_data_encrypt'(PlainText, Algorithm, Key, IV,
820 AuthLength, AuthTag, CipherText, Options).
829crypto_modular_inverse(X, M, Y) :- 830 integer_serialized(X, XS), 831 integer_serialized(M, MS), 832 '_crypto_modular_inverse'(XS, MS, YHex), 833 hex_to_integer(YHex, Y). 834 835integer_serialized(I, serialized(S)) :- 836 must_be(integer, I), 837 integer_atomic_sign(I, Sign), 838 Abs is abs(I), 839 format(atom(A0), "~16r", [Abs]), 840 atom_length(A0, L), 841 Rem is L mod 2, 842 hex_pad(Rem, Sign, A0, S). 843 844integer_atomic_sign(I, S) :- 845 Sign is sign(I), 846 sign_atom(Sign, S). 847 848sign_atom(-1, '-'). 849sign_atom( 0, ''). 850sign_atom( 1, ''). 851 852hex_pad(0, Sign, A0, A) :- atom_concat(Sign, A0, A). 853hex_pad(1, Sign, A0, A) :- atomic_list_concat([Sign,'0',A0], A). 854 855pow256(Byte, N0-I0, N-I) :- 856 N is N0 + Byte*256^I0, 857 I is I0 + 1. 858 859hex_to_integer(Hex, N) :- 860 hex_bytes(Hex, Bytes0), 861 reverse(Bytes0, Bytes), 862 foldl(pow256, Bytes, 0-0, N-_).
true
(default is false
), then a safe prime
is generated. This means that P is of the form 2*Q + 1 where Q
is also prime.
874crypto_generate_prime(Bits, P, Options) :-
875 must_be(list, Options),
876 option(safe(Safe), Options, false),
877 '_crypto_generate_prime'(Bits, Hex, Safe, Options),
878 hex_to_integer(Hex, P).
890crypto_is_prime(P0, Options) :-
891 must_be(integer, P0),
892 must_be(list, Options),
893 option(iterations(N), Options, -1),
894 integer_serialized(P0, P),
895 '_crypto_is_prime'(P, N).
prime256v1
and
secp256k1
.
If you have OpenSSL installed, you can get a list of supported curves via:
$ openssl ecparam -list_curves
918crypto_curve_order(Curve, Order) :-
919 '_crypto_curve_order'(Curve, Hex),
920 hex_to_integer(Hex, Order).
927crypto_curve_generator(Curve, point(X,Y)) :-
928 '_crypto_curve_generator'(Curve, X0, Y0),
929 hex_to_integer(X0, X),
930 hex_to_integer(Y0, Y).
937crypto_curve_scalar_mult(Curve, S0, point(X0,Y0), point(A,B)) :- 938 maplist(integer_serialized, [S0,X0,Y0], [S,X,Y]), 939 '_crypto_curve_scalar_mult'(Curve, S, X, Y, A0, B0), 940 hex_to_integer(A0, A), 941 hex_to_integer(B0, B). 942 943 944 /******************************* 945 * Sandboxing * 946 *******************************/ 947 948:- multifile sandbox:safe_primitive/1. 949 950sandbox:safe_primitive(crypto:hex_bytes(_,_)). 951sandbox:safe_primitive(crypto:crypto_n_random_bytes(_,_)). 952 953sandbox:safe_primitive(crypto:crypto_data_hash(_,_,_)). 954sandbox:safe_primitive(crypto:crypto_data_context(_,_,_)). 955sandbox:safe_primitive(crypto:crypto_context_new(_,_)). 956sandbox:safe_primitive(crypto:crypto_context_hash(_,_)). 957 958sandbox:safe_primitive(crypto:crypto_password_hash(_,_)). 959sandbox:safe_primitive(crypto:crypto_password_hash(_,_,_)). 960sandbox:safe_primitive(crypto:crypto_data_hkdf(_,_,_,_)). 961 962sandbox:safe_primitive(crypto:ecdsa_sign(_,_,_,_)). 963sandbox:safe_primitive(crypto:ecdsa_verify(_,_,_,_)). 964 965sandbox:safe_primitive(crypto:rsa_sign(_,_,_,_)). 966sandbox:safe_primitive(crypto:rsa_verify(_,_,_,_)). 967sandbox:safe_primitive(crypto:rsa_public_encrypt(_,_,_,_)). 968sandbox:safe_primitive(crypto:rsa_public_decrypt(_,_,_,_)). 969sandbox:safe_primitive(crypto:rsa_private_encrypt(_,_,_,_)). 970sandbox:safe_primitive(crypto:rsa_private_decrypt(_,_,_,_)). 971 972sandbox:safe_primitive(crypto:crypto_data_decrypt(_,_,_,_,_,_)). 973sandbox:safe_primitive(crypto:crypto_data_encrypt(_,_,_,_,_,_)). 974 975sandbox:safe_primitive(crypto:crypto_modular_inverse(_,_,_)). 976sandbox:safe_primitive(crypto:crypto_generate_prime(_,_,_)). 977sandbox:safe_primitive(crypto:crypto_is_prime(_,_)). 978 979sandbox:safe_primitive(crypto:crypto_name_curve(_,_)). 980sandbox:safe_primitive(crypto:crypto_curve_order(_,_)). 981sandbox:safe_primitive(crypto:crypto_curve_generator(_,_)). 982sandbox:safe_primitive(crypto:crypto_curve_scalar_mult(_,_,_,_)). 983 984 /******************************* 985 * MESSAGES * 986 *******************************/ 987 988:- multifile 989 prolog:error_message//1. 990 991prologerror_message(ssl_error(ID, _Library, Function, Reason)) --> 992 [ 'SSL(~w) ~w: ~w'-[ID, Function, Reason] ]
Cryptography and authentication library
This library provides bindings to functionality of OpenSSL that is related to cryptography and authentication, not necessarily involving connections, sockets or streams.
The hash functionality of this library subsumes and extends that of
library(sha)
,library(hash_stream)
andlibrary(md5)
by providing a unified interface to all available digest algorithms.The underlying OpenSSL library (
libcrypto
) is dynamically loaded if eitherlibrary(crypto)
orlibrary(ssl)
are loaded. Therefore, if your application useslibrary(ssl)
, you can uselibrary(crypto)
for hashing without increasing the memory footprint of your application. In other cases, the specialised hashing libraries are more lightweight but less general alternatives tolibrary(crypto)
.